Time Series Forecasting for Energy Management: Neural Circuit Policies (NCPs) vs. Long Short-Term Memory (LSTM) Networks

Author:

Palma Giulia12ORCID,Chengalipunath Elna Sara Joy3ORCID,Rizzo Antonio1ORCID

Affiliation:

1. Dipartimento di Scienze Sociali Potiche e Cognitive, Università degli Studi di Siena, 53100 Siena, Italy

2. Sunlink Srl, 55100 Lucca, Italy

3. Dipartimento di Ingegneria Dell’Informazione e Scienze Matematiche, Università degli Studi di Siena, 53100 Siena, Italy

Abstract

This paper investigates the effectiveness of Neural Circuit Policies (NCPs) compared to Long Short-Term Memory (LSTM) networks in forecasting time series data for energy production and consumption in the context of predictive maintenance. Utilizing a dataset generated from the energy production and consumption data of a Tuscan company specialized in food refrigeration, we simulate a scenario where the company employs a 60 kWh storage system and calculate the battery charge and discharge policies to assess potential cost reductions and increased self-consumption of produced energy. Our findings demonstrate that NCPs outperform LSTM networks by leveraging underlying physical models, offering superior predictive maintenance solutions for energy consumption and production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3