Affiliation:
1. The School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
Abstract
A smart grid is designed to enable the massive deployment and efficient use of distributed energy resources, including distributed photovoltaics (DPV). Due to the large number, wide distribution, and insufficient monitoring information of DPV stations, the pressure to maintain them has increased rapidly. Furthermore, based on reports in the relevant literature, there is still a lack of efficient large-scale maintenance strategies for DPV stations at present, leading to the high maintenance costs and overall low efficiency of DPV stations. Therefore, this paper proposes a maintenance period decision model and an areal maintenance strategy. The implementation steps of the method are as follows: firstly, based on the reliability model and dust accumulation model of the DPV components, the maintenance period decision model is established for different numbers of DPV stations and different driving distances; secondly, the optimal maintenance period is determined by using the Monte Carlo method to calculate the average economic benefits of daily maintenance during different periods; then, an areal maintenance strategy is proposed to classify all the DPV stations into different areas optimally, where each area is maintained to reach the overall economic optimum for the DPV stations; finally, the validity and rationality of this strategy are verified with the case study of the DPV poverty alleviation project in Badong County, Hubei Province. The results indicate that compared with an independent maintenance strategy, the proposed strategy can decrease the maintenance cost by 10.38% per year, which will help promote the construction of the smart grid and the development of sustainable cities. The results prove that the method proposed in this paper can effectively reduce maintenance costs and improve maintenance efficiency.
Funder
National Key R&D Program of China