Prompt-Based End-to-End Cross-Domain Dialogue State Tracking

Author:

Lu Hengtong1,Zhong Lucen1,Jiang Huixing2,Chen Wei2,Yuan Caixia1,Wang Xiaojie1

Affiliation:

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100083, China

2. Li Auto Inc., Beijing 101399, China

Abstract

Cross-domain dialogue state tracking (DST) focuses on using labeled data from source domains to train a DST model for target domains. It is of great significance for transferring a dialogue system into new domains. Most of the existing cross-domain DST models track each slot independently, which leads to poor performances caused by not considering the correlation among different slots, as well as low efficiency of training and inference. This paper, therefore, proposes a prompt-based end-to-end cross-domain DST method for efficiently tracking all slots simultaneously. A dynamic prompt template shuffle method is proposed to alleviate the bias of the slot order, and a dynamic prompt template sampling method is proposed to alleviate the bias of the slot number, respectively. The experimental results on the MultiWOZ 2.0 and MultiWOZ 2.1 datasets show that our approach consistently outperforms the state-of-the-art baselines in all target domains and improves both training and inference efficiency by at least 5 times.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3