Enhanced Automatic Morphometry of Nerve Histological Sections Using Ensemble Learning

Author:

Dweiri YazanORCID,Al-Zanina Mousa,Durand DominiqueORCID

Abstract

There is a need for an automated morphometry algorithm to facilitate the otherwise labor-intensive task of the quantitative histological analysis of neural microscopic images. A benchmark morphometry algorithm is the convolutional neural network Axondeepseg (ADS), which yields a high segmentation accuracy for scanning and transmission electron microscopy images. Nevertheless, it shows decreased accuracy when applied to optical microscopy images, and it has been observed to yield sizable false positives when identifying small-sized neurons within the slides. In this study, ensemble learning is used to enhance the performance of ADS by combining it with the paired image-to-image translation algorithm PairedImageTranslation (PIT). Here, 120 optical microscopy images of peripheral nerves were used to train and test the ensemble learning model and the two base models individually for comparison. The results showed weighted pixel-wise accuracy for the ensemble model of 95.5%, whereas the ADS and PIT yielded accuracies of 93.4% and 90%, respectively. The automated measurements of the axon diameters and myelin thicknesses from the manually marked ground truth images were not statistically different (p = 0.05) from the measurements taken from the same images when segmented using the developed ensemble model, while they were different when they were measured from the segmented images by the two base models individually. The automated measurement of the G ratios indicated a higher similarity to the ground truth testing images for the ensemble model in comparison with the individual base models. The proposed model yielded automated segmentation of the nerve slides, which were sufficiently equivalent to the manual annotations and could be employed for axon diameters and myelin thickness measurements for fully automated histological analysis of the neural images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3