Abstract
There is a need for an automated morphometry algorithm to facilitate the otherwise labor-intensive task of the quantitative histological analysis of neural microscopic images. A benchmark morphometry algorithm is the convolutional neural network Axondeepseg (ADS), which yields a high segmentation accuracy for scanning and transmission electron microscopy images. Nevertheless, it shows decreased accuracy when applied to optical microscopy images, and it has been observed to yield sizable false positives when identifying small-sized neurons within the slides. In this study, ensemble learning is used to enhance the performance of ADS by combining it with the paired image-to-image translation algorithm PairedImageTranslation (PIT). Here, 120 optical microscopy images of peripheral nerves were used to train and test the ensemble learning model and the two base models individually for comparison. The results showed weighted pixel-wise accuracy for the ensemble model of 95.5%, whereas the ADS and PIT yielded accuracies of 93.4% and 90%, respectively. The automated measurements of the axon diameters and myelin thicknesses from the manually marked ground truth images were not statistically different (p = 0.05) from the measurements taken from the same images when segmented using the developed ensemble model, while they were different when they were measured from the segmented images by the two base models individually. The automated measurement of the G ratios indicated a higher similarity to the ground truth testing images for the ensemble model in comparison with the individual base models. The proposed model yielded automated segmentation of the nerve slides, which were sufficiently equivalent to the manual annotations and could be employed for axon diameters and myelin thickness measurements for fully automated histological analysis of the neural images.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering