Hybrid Software Deployment Strategy for Complex Industrial Systems

Author:

Rajković PetarORCID,Aleksić Dejan,Djordjević Andjelija,Janković Dragan

Abstract

Complex industrial systems run the different pieces of software in several interconnected physical layers. The software update in such an environment must be performed in the shortest possible period with the lowest possible resource usage. Namely, it is critical to minimize the data traffic, decrease software downtime, and reduce the impact of the transitional stage during the update process. To meet these requirements and to unify the update process, the common software node structure along with a hybrid software deployment strategy is proposed. The hybrid strategy is defined as a combination of the existing and well-tested techniques—blue/green, canary, and feature flags. The main aim was to utilize their positive sides and to obtain a better overall effect. The approach was tested in the simulation environment, based on the realistic factory layout, and running the software related to the enterprise resource planning (ERP) level. For successful updates, the proposed hybrid deployment method reduced downtime on server nodes to less than 5% and on client nodes to a half compared with the standard approach. The volume of data traffic reduction in a configuration with sentinel nodes is reduced by one-third. The presented results look promising, especially in cases of erroneous updates when a roll back is needed, where the downtime on the server nodes is reduced to the level of 3%. Achieved results are used to define the set of recommendations that could be extended for the other software layers, followed by a discussion about further potential problems and strategy variations.

Funder

Ministry of Education, Science, and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3