Performance Analysis of Cell-Free Massive MIMO System with Network-Assisted Full-Duplex under Time-Shifting Pilot Scheme

Author:

Ma Tao,Hu YanfengORCID,Fan Zhenqi,Xia Xinjiang,Wang Dongming

Abstract

A network-assisted full-duplex (NAFD) system based on a cell-free (CF) massive multiple-input, multiple-output (MIMO) framework has been proposed to satisfy the demands of higher data transmission rates and efficient communication. However, pilot contamination may occur due to the reuse of pilot sequences in a massive MIMO. With this consideration, we raise an asynchronous channel estimation method based on an uplink and downlink time-shifting pilot-sending scheme, which is able to avoid pilot sequence reuse when obtaining channel state information (CSI), while the data signals could be transmitted simultaneously at the same frequency. The transmission processes of the proposed method above are divided into three phases, including pilot phase, estimation phase, and data phase, in chronological order. When the uplink is in pilot phase, the corresponding downlink is in data phase and vice versa. After the channel state information estimation, both uplinks and downlinks are in data phase. The maximum ratio combination (MRC) receiver and the maximum ratio transmission (MRT) precoding are adopted in the uplink and downlink. The closed-form expressions are derived based on large-scale random matrix theory. We compared our asymptotic results with practical results in simulation, and find that they are well matched. Moreover, the proposed method is superior to the normal time-division duplex (TDD) system.

Funder

State Grid Corporation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3