Semantic Super-Resolution of Text Images via Self-Distillation

Author:

Park HanhoonORCID

Abstract

This research develops an effective single-image super-resolution (SR) method that increases the resolution of scanned text or document images and improves their readability. To this end, we introduce a new semantic loss and propose a semantic SR method that guides an SR network to learn implicit text-specific semantic priors through self-distillation. Experiments on the enhanced deep SR (EDSR) model, one of the most popular SR networks, confirmed that semantic loss can contribute to further improving the quality of text SR images. Although the improvement varied depending on image resolution and dataset, the peak signal-to-noise ratio (PSNR) value was increased by up to 0.3 dB by introducing the semantic loss. The proposed method outperformed an existing semantic SR method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Image Super-Resolution Via Sparse Representation

2. Super resolution using edge prior and single image detail synthesis;Tai;Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010

3. Convolutional neural networks: an overview and application in radiology

4. Deep Learning for Image Super-Resolution: A Survey

5. Learning to Super-Resolve Blurry Face and Text Images

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3