LST-GCN: Long Short-Term Memory Embedded Graph Convolution Network for Traffic Flow Forecasting

Author:

Han Xu,Gong Shicai

Abstract

Traffic flow prediction is an important part of the intelligent transportation system. Accurate traffic flow prediction is of great significance for strengthening urban management and facilitating people’s travel. In this paper, we propose a model named LST-GCN to improve the accuracy of current traffic flow predictions. We simulate the spatiotemporal correlations present in traffic flow prediction by optimizing GCN (graph convolutional network) parameters using an LSTM (long short-term memory) network. Specifically, we capture spatial correlations by learning topology through GCN networks and temporal correlations by embedding LSTM networks into the training process of GCN networks. This method improves the traditional method of combining the recurrent neural network and graph neural network in the original spatiotemporal traffic flow prediction, so it can better capture the spatiotemporal features existing in the traffic flow. Extensive experiments conducted on the PEMS dataset illustrate the effectiveness and outperformance of our method compared with other state-of-the-art methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. Traveler behavior and intelligent transportation systems;Hani;Transp. Res. Part C Emerg. Technol.,1999

2. Research on geographic information system intelligent transportation systems;Li;Chung-Kuo K. Lu Hsueh Pao China J. Highw. Transp.,2000

3. A summary of traffic flow forecasting methods;Liu;J. Highw. Transp. Res. Dev.,2004

4. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data

5. Semi-Supervised Classification with Graph Convolutional Networks;Kipf;arXiv,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3