Interference Signal Feature Extraction and Pattern Classification Algorithm Based on Deep Learning

Author:

Qin Jiangyi,Zhang Fei,Wang Kai,Zuo YuanORCID,Deng Chenxi

Abstract

Aiming at the scarcity of Low Earth Orbit (LEO) satellite spectrum resources, this paper proposes an algorithm of interference signal feature extraction and pattern classification based on deep learning to further improve the stability of satellite–ground communication links. The algorithm can successfully predict the interference signal pattern, start–stop time, frequency change range and other parameters, and has the advantages of excellent interference detection performance, high detection accuracy and small parameter prediction error, etc. It can be applied in the field of channel monitoring of communication satellite-to-ground communication links, and realize the repeated and efficient utilization of spectrum resources. Experiments show that the precision and recall of the algorithm for detecting five kinds of interference signals are all close to 100%, the prediction error of starting and ending time is less than 4 ms, and the prediction error of starting and ending frequency is less than 6 KHz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3