Adversarial Attack and Defense Strategies of Speaker Recognition Systems: A Survey

Author:

Tan HaoORCID,Wang LeORCID,Zhang Huan,Zhang Junjian,Shafiq Muhammad,Gu ZhaoquanORCID

Abstract

Speaker recognition is a task that identifies the speaker from multiple audios. Recently, advances in deep learning have considerably boosted the development of speech signal processing techniques. Speaker or speech recognition has been widely adopted in such applications as smart locks, smart vehicle-mounted systems, and financial services. However, deep neural network-based speaker recognition systems (SRSs) are susceptible to adversarial attacks, which fool the system to make wrong decisions by small perturbations, and this has drawn the attention of researchers to the security of SRSs. Unfortunately, there is no systematic review work in this domain. In this work, we conduct a comprehensive survey to fill this gap, which includes the development of SRSs, adversarial attacks and defenses against SRSs. Specifically, we first introduce the mainstream frameworks of SRSs and some commonly used datasets. Then, from the perspectives of adversarial example generation and evaluation, we introduce different attack tasks, the prior knowledge of attacks, perturbation objects, perturbation constraints, and attack effect evaluation indicators. Next, we focus on some effective defense strategies, including adversarial training, attack detection, and input refactoring against existing attacks, and analyze their strengths and weaknesses in terms of fidelity and robustness. Finally, we discuss the challenges posed by audio adversarial examples in SRSs and some valuable research topics in the future.

Funder

the Major Key Project of PCL

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid quantum architecture for smart city security;Journal of Systems and Software;2024-11

2. Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches;Applied Data Science and Analysis;2024-08-07

3. Robust convolutional neural network with integrated multiscale attention mechanism against adversarial attacks;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11

4. Enhancing cross-domain transferability of black-box adversarial attacks on speaker recognition systems using linearized backpropagation;Pattern Analysis and Applications;2024-05-13

5. Universal Adversarial Attack Against Speaker Recognition Models;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3