Blockchain Smart Contract to Prevent Forgery of Degree Certificates: Artificial Intelligence Consensus Algorithm

Author:

Kim Seong-Kyu

Abstract

Certificates are often falsified, such as fake diplomas and forged transcripts. As such, many schools and educational institutions have begun to issue diplomas online. Although diplomas can be issued conveniently anytime, anywhere, there are many cases wherein diplomas are forged through hacking and forgery. This paper deals with the required Blockchain diploma. In addition, we use an automatic translation system, which incorporates natural language processing, to perform verification work that does not require an existing public certificate. The hash algorithm is used to authenticate security. This paper also proposes the use of these security protocols to provide more secure data protection. In addition, each transaction history, whether a diploma is true or not, may be different in length if it is presented in text, but converting it into a hash function means that it is always more than a certain length of SHA-512 or higher. It is then verified using the time stamp values. These chaining codes are designed. This paper also provides the necessary experimental environment. At least 10 nodes are constructed. Blockchain platform development applies and references Blockchain standardization, and a platform test, measurement test, and performance measurement test are conducted to assess the smart contract development and performance measurement. A total of 500 nodes were obtained by averaging 200 times, and a Blockchain-based diploma file was agreed upon at the same time. It shows performance information of about 4100 TPS. In addition, the analysis of artificial intelligence distribution diagram was conducted using a four-point method, and the distribution chart was evenly distributed, confirming the diploma with the highest similarity. The verified values were then analyzed. This paper proposes these natural language processing-based Blockchain algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3