Research on Medical Text Classification Based on Improved Capsule Network

Author:

Zhang Qinghui,Yuan Qihao,Lv PengtaoORCID,Zhang Mengya,Lv Lei

Abstract

In the medical field, text classification based on natural language process (NLP) has shown good results and has great practical application prospects such as clinical medical value, but most existing research focuses on English electronic medical record data, and there is less research on the natural language processing task for Chinese electronic medical records. Most of the current Chinese electronic medical records are non-institutionalized texts, which generally have low utilization rates and inconsistent terminology, often mingling patients’ symptoms, medications, diagnoses, and other essential information. In this paper, we propose a Capsule network model for electronic medical record classification, which combines LSTM and GRU models and relies on a unique routing structure to extract complex Chinese medical text features. The experimental results show that this model outperforms several other baseline models and achieves excellent results with an F1 value of 73.51% on the Chinese electronic medical record dataset, at least 4.1% better than other baseline models.

Funder

National Natural Science Foundation of China

Major Public Welfare Project of Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GDEMO-HAT: Knowledge-guided Medical Text Classification Using Heterogeneous Graph-based Dependency Modeling with Hierarchical Attention;2023 IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA);2023-10-27

2. A medical text classification approach with ZEN and capsule network;The Journal of Supercomputing;2023-09-13

3. NLP for Enterprise Asset Management: An Emerging Paradigm;2023 27th International Conference Information Visualisation (IV);2023-07-25

4. An interpretable diagnostic approach for lung cancer: Combining maximal clique and improved BERT;Expert Systems;2023-04-18

5. A Prompt Tuning Method for Chinese Medical Text Classification;Advanced Data Mining and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3