Evaluation of Standard Electrical Bonding Strategies for the Hybrid Integration of Inkjet-Printed Electronics

Author:

Rauter LukasORCID,Zikulnig JohannaORCID,Sinani Taulant,Zangl HubertORCID,Faller Lisa-MarieORCID

Abstract

Different conductive bonding strategies for the hybrid integration of flexible, inkjet-printed electronics are investigated. The focus of the present work lies on providing a practical guide comprising standard techniques that are inexpensive, easily implementable and frequently used. A sample set consisting of identical conductive test structures on different paper and plastic substrates was prepared using silver (Ag) nanoparticle ink. The sintered specimens were electrically contacted using soldering, adhesive bonding and crimping. Electrical and mechanical characterization before and after exposing the samples to harsh environmental conditions was performed to evaluate the reliability of the bonding methods. Resistance measurements were done before and after connecting the specimens. Afterwards, 85 °C/85% damp-heat tests and tensile tests were applied. Adhesive bonding appears to be the most suitable and versatile method, as it shows adequate stability on all specimen substrates, especially after exposure to a 85 °C/85% damp-heat test. During exposure to mechanical tensile testing, adhesive bonding proved to be the most stable, and forces up to 12 N could be exerted until breakage of the connection. As a drawback, adhesive bonding showed the highest increase in electrical resistance among the different bonding strategies.

Funder

European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3