LMI-Based Model Predictive Current Control for an LCL-Filtered Grid-Connected Inverter under Unexpected Grid and System Uncertainties

Author:

Kim YubinORCID,Tran Thuy ViORCID,Kim Kyeong-HwaORCID

Abstract

To guarantee a system stability and reliable operation of an inductor-capacitor-inductor (LCL)-filtered grid-connected inverter (GCI) under unexpected grid and system uncertainties, a linear matrix inequality (LMI)-based model predictive control (MPC) is presented in this paper. Even though the conventional MPC scheme is constructed by a simple concept, it is difficult to determine an optimized weighting matrix of the MPC cost function against parameter discrepancies. To overcome this problem, the MPC scheme is combined with LMI-based optimization. The system states are estimated by the LMI-based current-type observer in the stationary reference frame to implement the proposed scheme. Additionally, the MPC scheme is combined with the disturbance observer to eliminate offset error, which improves the reference tracking performance. In comparison with the other studies, the proposed control method ensures high robust control performance under grid voltage imbalance, parameter uncertainty, and frequency variation. In addition, the proposed approach achieves a robust active damping even for the grid impedance variation without the need of considering further damping method. The control design step is systematic and straightforward. Furthermore, unlike the conventional schemes, the proposed controller does not require an integral term and the 2nd harmonic compensation term to obtain a good reference tracking performance under grid imbalanced condition, which contributes to the reduction of the controller complexity by decreasing the order of the controller model. To verify the effectiveness of the proposed LMI-based MPC control scheme, the simulation and experiments are carried out by using prototype three-phase GCI. The comprehensive simulation and experimental results clearly demonstrate the robustness of the proposed current controller under various adverse test conditions with unexpected grid and system uncertainties.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3