Finite-Time Parameter Observer-Based Sliding Mode Control for a DC/DC Boost Converter with Constant Power Loads

Author:

He WeiORCID,Shang YukaiORCID

Abstract

Constant power loads have negative impedance characteristics, which reduce the damping of DC/DC converter systems and have negative effects on the stability of the DC microgrid. In this paper, a finite-time parameter observer-based sliding mode controller is proposed for a boost converter with constant power loads. Firstly, a non-singular terminal sliding-mode controller is designed based on the flatness of the differential and sliding mode control theory. Secondly, a finite-time observer is designed to estimate the input voltage and tunes the parameter of the controller in time. Thirdly, the finite-time stability of the closed-loop system is proved through the proposed controller. Finally, the effectiveness and robustness of the proposed controller with unknown input voltage are verified by simulation. The proposed controller can guarantee finite-time convergence without input voltage sensors, which can reduce system cost and improve system reliability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3