IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm

Author:

Andrijević NebojšaORCID,Urošević Vlada,Arsić Branko,Herceg Dejana,Savić Branko

Abstract

A significant number of recent scientific papers have raised awareness of changes in the biological world of bees, problems with their extinction, and, as a consequence, their impact on humans and the environment. This work relies on precision beekeeping in apiculture and raises the scale of measurement and prediction results using the system we developed, which was designed to cover beehive ecosystem. It is equipped with an IoT modular base station that collects a wide range of parameters from sensors on the hive and a bee counter at the hive entrance. Data are sent to the cloud for storage, analysis, and alarm generation. A time-series forecasting model capable of estimating the volume of bee exits and entrances per hour, which simulates dependence between environmental conditions and bee activity, was devised. The applied mathematical models based on recurrent neural networks exhibited high accuracy. A web application for monitoring and prediction displays parameters, measured values, and predictive and analytical alarms in real time. The predictive component utilizes artificial intelligence by applying advanced analytical methods to find correlation between sensor data and the behavioral patterns of bees, and to raise alarms should it detect deviations. The analytical component raises an alarm when it detects measured values that lie outside of the predetermined safety limits. Comparisons of the experimental data with the model showed that our model represents the observed processes well.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3