Abstract
In this paper, the robot grasping for stacked objects is studied based on object detection and grasping order planning. Firstly, a novel stacked object classification network (SOCN) is proposed to realize stacked object recognition. The network takes into account the visible volume of the objects to further adjust its inverse density parameters, which makes the training process faster and smoother. At the same time, SOCN adopts the transformer architecture and has a self-attention mechanism for feature learning. Subsequently, a grasping order planning method is investigated, which depends on the security score and extracts the geometric relations and dependencies between stacked objects, it calculates the security score based on object relation, classification, and size. The proposed method is evaluated by using a depth camera and a UR-10 robot to complete grasping tasks. The results show that our method has high accuracy for stacked object classification, and the grasping order effectively and successfully executes safely.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献