Quasi-Real RFI Source Generation Using Orolia Skydel LEO Satellite Simulator for Accurate Geolocation and Tracking: Modeling and Experimental Analysis

Author:

Elgamoudi AbulasadORCID,Benzerrouk HamzaORCID,Elango Ganapathy ArulORCID,Landry René Jr

Abstract

Accurate geolocation and tracking of Radio-Frequency Interference (RFI) sources, which affect wireless and satellite systems such as Global Navigation Satellite Systems (GNSS) and Satellite Communication (SatCom) systems, are considered to be a significant issue. Several studies connected to civil and military operations on this issue have been investigated recently. The literature review has surveyed many algorithm simulations for optimizing geolocation and target-tracking estimation. Although most of these algorithms have their own advantages, they have weaknesses, such as accuracy, mathematical complexity, difficulties in implementation, and validation in the real environment, etc. This study has been concerned with investigating the accuracy of geolocation and tracking under high speed and powerful rotation using extracted data from the Orolia Skydel simulator, which simulates the space environment involving Low Earth Orbit (LEO) satellites as sensors and Unmanned Aerial Vehicles (UAV) as RFI emitters. Various scenarios modeled using the Orolia Simulator for quasi-real dynamic trajectories of LEO satellites have been created. The assumed approaches have been verified by Cramer–Rao Lower Bound (CRLB) and Posterior CRLB (PCRLB) to determine the increase in Root Mean Square Error (RMSE) value. The simulation scenarios have been performed using the Monte Carlo iteration. Eventually, the overall achieved results of the considered approaches using data acquired from the Orolia Simulator were presented and compared with theoretical simulation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3