Hierarchical Blockchain-Based Multi-Chaincode Access Control for Securing IoT Systems

Author:

Abdi Adam IbrahimORCID,Eassa Fathy Elbouraey,Jambi Kamal,Almarhabi KhalidORCID,Khemakhem MaherORCID,Basuhail Abdullah,Yamin MohammadORCID

Abstract

The rapid growth of the Internet of Things (IoT) and its attributes of constrained devices and a distributed environment make it difficult to manage such a huge and growing network of devices on a global scale. Existing traditional access-control systems provide security and management to the IoT system. However, these mechanisms are based on central authority management, which introduces issues such as a single point of failure, low scalability, and a lack of privacy. In order to address these problems, many researchers have proposed using blockchain technology to achieve decentralized access control. However, such models are still faced with problems such as a lack of scalability and high computational complexity. In this paper, we propose a light-weight hierarchical blockchain-based multi-chaincode access control to protect the security and privacy of IoT systems. A clustering concept with BC managers enables the extended scalability of the proposed system. The architecture of the proposed solution contains three main components: an Edge Blockchain Manager (EBCM), which is responsible for authenticating and authorizing constrained devices locally; an Aggregated Edge Blockchain Manager (AEBCM), which contains various EBCMs to control different clusters and manage ABAC policies, and a Cloud Consortium Blockchain Manager (CCBCM), which ensures that only authorized users access the resources. In our solution, smart contracts are used to self-enforce decentralized AC policies. We implement a proof of concept for our proposed system using the permissioned Hyperledger Fabric. The simulation results and the security analysis show the efficiency and effectiveness of the proposed solution.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain Applications for Internet of Things — A Survey;Internet of Things;2024-10

2. Cloud-Based Access Control Including Time and Location;Electronics;2024-07-17

3. Research on the framework of collaborative sharing of credit data master-slave chain based on digital government;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11

4. Deep neural network-based secure healthcare framework;Neural Computing and Applications;2024-06-20

5. Healthcare Internet of Things: Security Threats, Challenges, and Future Research Directions;IEEE Internet of Things Journal;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3