Abstract
Ride comfort and driving safety are highly vulnerable to the undesirable excessive vibrations caused by road surface irregularities and the imperfect in-vehicle network (IVN). The main contribution of this paper consists of proposing a near-optimal vibration control approach for networked vehicle active suspension under irregular road excitations in a discrete-time domain, in which the uncertain time delay and packet dropout in CAN are taken into consideration. More specially, by virtue of two buffers of the sensor-to-controller network channel and the controller-to-actuator network channel in CAN, by introducing a designed state-transformation-based method, the original vibration control problem under the constraints of the irregular road excitations and imperfect CAN is transformed into a two-point boundary value (TPBV) problem without advanced and delayed items. After that, the near-optimal vibration control approach is presented to isolate the vehicle body from the road excitations and compensate the time delay and packet dropout from CAN synchronously. The stability condition of the networked vehicle active suspension under the proposed vibration controller is obtained based on the Lyapunov function. In numerous scenarios with different road roughnesses and network-induced time delays and packet dropouts, the simulation results illustrate the effectiveness and superiority of the proposed near-optimal vibration controller.
Funder
Natural Science Foundation of Shandong Province for Key Project
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献