Analysis and Design Multiple Layer Adaptive Kalman Filter Applied to Electro-Optical Infrared Payload Vision System

Author:

Lin Chun-Yi,Yao Wu-Sung

Abstract

This study designs a trigger to determine the number of layers of a multi-layer adaptive Kalman filter and applies it to optoelectronic infrared payload system vision. This feature reduces the number of mechanically stabilized motors, equipment weight, CPU resources, and power for an electro-optical infrared payload system. The goal is to reduce the traditional use of multiple gyroscopes to perform calibration measurements on different gimbal frames by this design. In this study, mathematical modeling was carried out for the three-axis, three-frame camera stabilizer system, and the system foundation without motor and gimbal frame was established to achieve aperture-type camera mode. The exposure of the drone’s payload structure outside the aircraft can be reduced. This study provides the adaptive Kalman filter with the offset parameters of the camera image Minimum Output Sum of Squared Error and the three-axis degrees of freedom vector and angle data on the gyroscope. By using the image processing unit, the offset was corrected at each frame per second. The experimental results show that under the same hardware, failure limit and camera field of view constraints. The processing time by this method was compared to the traditional frame correction and full image stabilization methods. The results show that the proposed method can shorten 6 microseconds under the traditional method and can be used to provide lower power consumption, lower image delay, and a larger viewing angle range.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference18 articles.

1. Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion

2. Design optimization of the inner gimbal for dual axis inertially stabilized platform using finite element modal analysis;Mokbel;Int. J. Mod. Eng. Res.,2012

3. On-board visual tracking with unmanned aircraft system (uas);Qadir,2011

4. Influence of three-axis turntable error on gyro calibration accuracy;Li;Electr. Mach. Control,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3