Renewable Energy Micro-Grid Interfacing: Economic and Environmental Issues

Author:

Abou El-Ela Adel A.,El-Sehiemy Ragab A.ORCID,Allam Sohir M.,Shaheen Abdullah M.ORCID,Nagem Nadia A.,Sharaf Adel M.

Abstract

This paper presents a study on the technical, economic, and environmental aspects of renewable energy resources-based distributed generation units (DGs). These units are connected to the medium-voltage network to create a new structure called a microgrid (MG). Renewable energies, especially wind and solar, are the most important generation units among DGs. The stochastic behavior of renewable resources increases the need to find the optimum operation of the MG. The optimal operation of a typical MG aims to simultaneously minimize the operational costs and the accompanied emission pollutants over a daily scheduling horizon. Several renewable DGs are investigated in the MG, consisting of biomass generators (BGs), wind turbines (WTs), and photovoltaics (PV). For the proposed operating strategy of the MG, a recent equilibrium optimization (EO) technique is developed and is inspired by the mass balance models for a control volume that are used to estimate their dynamic and equilibrium states. The uncertainties of wind speed and solar irradiation are considered via the Weibull and Beta-probability density functions (PDF) with different states of mean and standard deviation for each hour, respectively. Based on the developed EO, the hourly output powers of the PV, WT, and BGs are optimized, as are the associated power factors of the BGs. The proposed MG operating strategy based on the developed EO is tested on the IEEE 33-bus system and the practical large-scale 141-bus system of AES-Venezuela in the metropolitan area of Caracas. The simulation results demonstrate the significant benefits of the optimal operation of a typical MG using the developed EO by minimizing the operational costs and emissions while preserving the penetration level of the DGs by 60%. Additionally, the voltage profile of the MG operation for each hour is highly enhanced where the minimum voltage at each hour is corrected within the permissible limit of [0.95–1.05] Pu. Moreover, the active power losses per hour are greatly reduced.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3