Deep Learning for Activity Recognition Using Audio and Video

Author:

Reinolds FranciscoORCID,Neto CristianaORCID,Machado JoséORCID

Abstract

Neural networks have established themselves as powerhouses in what concerns several types of detection, ranging from human activities to their emotions. Several types of analysis exist, and the most popular and successful is video. However, there are other kinds of analysis, which, despite not being used as often, are still promising. In this article, a comparison between audio and video analysis is drawn in an attempt to classify violence detection in real-time streams. This study, which followed the CRISP-DM methodology, made use of several models available through PyTorch in order to test a diverse set of models and achieve robust results. The results obtained proved why video analysis has such prevalence, with the video classification handily outperforming its audio classification counterpart. Whilst the audio models attained on average 76% accuracy, video models secured average scores of 89%, showing a significant difference in performance. This study concluded that the applied methods are quite promising in detecting violence, using both audio and video.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3