A Novel Fundamental Frequency Switching Operation for Conventional VSI to Enable Single-Stage High-Gain Boost Inversion with ANN Tuned QWS Controller

Author:

Tripathi Prabhat R.ORCID,Laxmi V.,Keshri Ritesh K.ORCID,Appasani BhargavORCID,Ustun Taha SelimORCID

Abstract

Single-stage high-gain inverters have recently gained much research focus as interfaces for inherent low voltage DC sources such as fuel cells, storage batteries, and solar panels. Many impedance-assisted inverters with different input stage configurations have been presented. To decrease passive component sizes, these inverters operate at high-frequency switching. The high-frequency switching optimizes the passive component sizes but introduces many challenges in the form of high-frequency inductor design, control complexity, high-frequency gate driver requirements, high semiconductor losses, and electromagnetic interferences. This article proposes a novel fundamental frequency switching operation for the conventional voltage source inverters (VSI) to operate as a single-stage high-gain inverter. As the novel operational strategy changes the behavior of conventional VSI from buck inverter to a boost inverter, it is hereafter termed as a novel inverter. By virtue of the operation strategy, switches withstand peak inverse voltage (PIV) equal to DC link voltage, unlike other impedance assisted boost inverters where PIV across switches is the amplified DC voltage. The proposed inverter can invert low-level DC voltage to high voltage AC with low total harmonic distortion (THD) in a single stage without the help of any external filter. A novel quarter-wave symmetric phase-shift controller is proposed for variable voltage and frequency control of proposed inverters tuned by a back-propagation thin-plate-spline neural network (BPTPSNN). Mathematical analysis with experimental validation is presented. Experimentation is carried out on a prototype of 2 kW for single-phase resistive load, induction motor, and non-linear loads.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3