A WiFi-Based Sensor Network for Flood Irrigation Control in Agriculture

Author:

Lloret JaimeORCID,Sendra SandraORCID,García-Fernández Julia,García LauraORCID,Jimenez Jose M.ORCID

Abstract

The role of agriculture in society is vital due to factors such as providing food for the population, is a major source of employment worldwide, and one of the most important sources of revenue for countries. Furthermore, in recent years, the interest in optimizing the use of water resources has increased due to aspects such as climate change. This has led to the introduction of technology in the fields by means of sensor networks that allow remote monitoring and control of cultivated lands. In this paper, we present a system for flood irrigation in agriculture comprised of a sensor network based on WiFi communication. Different sensors measure atmospheric parameters such as temperature, humidity, and rain, soil parameters such as humidity, and water parameters such as water temperature, salinity, and water height to decide on the need of activating the floodgates for irrigation. The user application displays the data gathered by the sensors, shows a graphical representation of the state of irrigation of each ditch, and allows farmers to manage the irrigation of their fields. Finally, different tests were performed on a plot of vegetables to evaluate the correct performance of the system and the coverage of the sensor network on a vegetated area with different deployment options.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Employment in Agriculture https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?most_recent_value_desc=true

2. India—Employment in Agriculture https://tradingeconomics.com/india/employment-in-agriculture-percent-of-total-employment-wb-data.html

3. IOT based smart agriculture monitoring system;Suma;Int. J. Recent Innov. Trends Comput. Commun.,2017

4. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3