Abstract
In recent years, systems that monitor and control home environments, based on non-vocal and non-manual interfaces, have been introduced to improve the quality of life of people with mobility difficulties. In this work, we present the reconfigurable implementation and optimization of such a novel system that utilizes a recurrent neural network (RNN). As demonstrated in the real-world results, FPGAs have proved to be very efficient when implementing RNNs. In particular, our reconfigurable implementation is more than 150× faster than a high-end Intel Xeon CPU executing the reference inference tasks. Moreover, the proposed system achieves more than 300× the improvements, in terms of energy efficiency, when compared with the server CPU, while, in terms of the reported achieved GFLOPS/W, it outperforms even a server-tailored GPU. An additional important contribution of the work discussed in this study is that the implementation and optimization process demonstrated can also act as a reference to anyone implementing the inference tasks of RNNs in reconfigurable hardware; this is further facilitated by the fact that our C++ code, which is tailored for a high-level-synthesis (HLS) tool, is distributed in open-source, and can easily be incorporated to existing HLS libraries.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Visual Servoing using FPGA-based Hardware accelerated Deep Learning Solution;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14
2. Miniaturization for wearable EEG systems: recording hardware and data processing;Biomedical Engineering Letters;2022-06-06