Identifying Symmetric-Key Algorithms Using CNN in Intel Processor Trace

Author:

Yang WooyeolORCID,Park YongsuORCID

Abstract

Malware and ransomware are often encrypted to protect their own code, making it challenging to apply reverse engineering to analyze them. Recently, various studies have been underway to identify cryptography algorithms in malware or ransomware that use anti-reversing technology via deep-learning technology. In particular, CNNs (convolution neural networks) are deep-learning algorithms with superior performance, as compared to existing machine-learning algorithms in image classification. In the cases of malicious files to which anti-debugging techniques or anti-DBI (dynamic binary instrumentation) techniques are applied, if the traces are extracted using various debuggers or DBI, the traces are cut off due to these techniques. The IPT (Intel processor trace) has the advantage of extracting an accurate trace of a program by bypassing the anti-debugging or anti-DBI technique. This paper presents a novel method by which to identify the symmetric-key algorithms by applying a CNN to the traces extracted from the IPT. The IPT minimally interrupts software execution. First, the trace encrypted by the symmetric-key algorithms is extracted using the IPT. Then it is converted into an image to be an input into the CNN. The experiments were carried out with two different datasets. The first dataset contained traces extracted by different types of symmetric-key algorithms, and the training results were classified into nine classes with 100% accuracy. The second dataset contained traces that included the various bit sizes of the security keys and the block-cipher modes for each type of symmetric-key algorithm. Training results were classified into 36 classes with an accuracy of 70.55%. While previous studies have identified the types of encryption algorithms, this study employed a CNN to identify the number of key bits and the block-cipher modes as well.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Evil Offspring - Ransomware and Crypto Technology

2. A brief study of Wannacry threat: Ransomware attack;Mohurle;Int. J. Adv. Res. Comput.,2017

3. Ransomware analysis: Internet of things (iot) security issues, challenges and open problems inthe context of worldwide scenario of security of systems and malware attacks;Sharma;Int. J. Innov. Res. Sci. Eng.,2016

4. Malicious cryptography techniques for unreversable (malicious or not) binaries;Filiol;arXiv,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3