Author:
Hu Wanru,Wang Zhugang,Mei Ruru,Lin Meiyan
Abstract
This paper proposes a simple and robust variable modulation-decision-directed least mean square (VM-DDLMS) algorithm for reducing the complexity of conventional equalization algorithms and improving the stability of variable modulation (VM) systems. Compared to conventional adaptive equalization algorithms, known information was used as training sequences to reduce the bandwidth consumption caused by inserting training sequences; compared with conventional blind equalization algorithms, the parameters and decisions of the equalizer were determinate, which was conducive to a stable equalization performance. The simulation and implementation results show that the proposed algorithm has a better bit error rate (BER) performance than that of the constant modulus algorithm (CMA) and modified constant modulus algorithm (MCMA) while maintaining the same level of consumption of hardware resources. Compared to the conventional decision-directed least mean square (DDLMS) algorithm, the proposed algorithm only needs to make quadrature phase shift keying (QPSK) symbol decisions, which reduces the computational complexity. In parallel 11th-order equalization algorithms, the operating frequency of VM-DDLMS can reach up to 333.33 MHz.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献