Automated Workers’ Ergonomic Risk Assessment in Manual Material Handling Using sEMG Wearable Sensors and Machine Learning

Author:

Mudiyanselage Srimantha E.,Nguyen Phuong Hoang Dat,Rajabi Mohammad SadraORCID,Akhavian RezaORCID

Abstract

Manual material handling tasks have the potential to be highly unsafe from an ergonomic viewpoint. Safety inspections to monitor body postures can help mitigate ergonomic risks of material handling. However, the real effect of awkward muscle movements, strains, and excessive forces that may result in an injury may not be identified by external cues. This paper evaluates the ability of surface electromyogram (EMG)-based systems together with machine learning algorithms to automatically detect body movements that may harm muscles in material handling. The analysis utilized a lifting equation developed by the U.S. National Institute for Occupational Safety and Health (NIOSH). This equation determines a Recommended Weight Limit, which suggests the maximum acceptable weight that a healthy worker can lift and carry, as well as a Lifting Index value to assess the risk extent. Four different machine learning models, namely Decision Tree, Support Vector Machine, K-Nearest Neighbor, and Random Forest are developed to classify the risk assessments calculated based on the NIOSH lifting equation. The sensitivity of the models to various parameters is also evaluated to find the best performance using each algorithm. Results indicate that Decision Tree models have the potential to predict the risk level with close to 99.35% accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3