Abstract
Manual material handling tasks have the potential to be highly unsafe from an ergonomic viewpoint. Safety inspections to monitor body postures can help mitigate ergonomic risks of material handling. However, the real effect of awkward muscle movements, strains, and excessive forces that may result in an injury may not be identified by external cues. This paper evaluates the ability of surface electromyogram (EMG)-based systems together with machine learning algorithms to automatically detect body movements that may harm muscles in material handling. The analysis utilized a lifting equation developed by the U.S. National Institute for Occupational Safety and Health (NIOSH). This equation determines a Recommended Weight Limit, which suggests the maximum acceptable weight that a healthy worker can lift and carry, as well as a Lifting Index value to assess the risk extent. Four different machine learning models, namely Decision Tree, Support Vector Machine, K-Nearest Neighbor, and Random Forest are developed to classify the risk assessments calculated based on the NIOSH lifting equation. The sensitivity of the models to various parameters is also evaluated to find the best performance using each algorithm. Results indicate that Decision Tree models have the potential to predict the risk level with close to 99.35% accuracy.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献