Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx and Coshx Based on Improved CORDIC Algorithm

Author:

Fu Wenjia,Xia JinchengORCID,Lin Xu,Liu Ming,Wang Mingjiang

Abstract

CORDIC algorithm is used for low-cost hardware implementation to calculate transcendental functions. This paper proposes a low-latency high-precision architecture for the computation of hyperbolic functions sinhx and coshx based on an improved CORDIC algorithm, that is, the QH-CORDIC. The principle, structure, and range of convergence of the QH-CORDIC are discussed, and the hardware circuit architecture of functions sinhx and coshx using the QH-CORDIC is plotted in this paper. The proposed architecture is implemented using an FPGA device, showing that it has 75% and 50% latency overhead over the two latest prior works. In the synthesis using TSMC 65 nm standard cell library, ASIC implementation results show that the proposed architecture is also superior to the two latest prior works in terms of total time (latency × period), ATP (area × total time), total energy (power × total time), energy efficiency (total energy/efficient bits), and area efficiency (efficient bits/area/total time). Comparison of related works indicates that it is much more favorable for the proposed architecture to perform high-precision floating-point computations on functions sinhx and coshx than the LUT method, stochastic computing, and other CORDIC algorithms.

Funder

the Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Elementary Functions: Algorithms and Implementations;Muller,2006

2. Computer Arithmetic: Algorithms and Hardware Designs;Parhami,1999

3. Exact Lookup Tables for the Evaluation of Trigonometric and Hyperbolic Functions

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3