Automatic Melody Harmonization via Reinforcement Learning by Exploring Structured Representations for Melody Sequences

Author:

Zeng TeORCID,Lau Francis C. M.ORCID

Abstract

We present a novel reinforcement learning architecture that learns a structured representation for use in symbolic melody harmonization. Probabilistic models are predominant in melody harmonization tasks, most of which only treat melody notes as independent observations and do not take note of substructures in the melodic sequence. To fill this gap, we add substructure discovery as a crucial step in automatic chord generation. The proposed method consists of a structured representation module that generates hierarchical structures for the symbolic melodies, a policy module that learns to break a melody into segments (whose boundaries concur with chord changes) and phrases (the subunits in segments) and a harmonization module that generates chord sequences for each segment. We formulate the structure discovery process as a sequential decision problem with a policy gradient RL method selecting the boundary of each segment or phrase to obtain an optimized structure. We conduct experiments on our preprocessed HookTheory Lead Sheet Dataset, which has 17,979 melody/chord pairs. The results demonstrate that our proposed method can learn task-specific representations and, thus, yield competitive results compared with state-of-the-art baselines.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3