Abstract
We present a novel reinforcement learning architecture that learns a structured representation for use in symbolic melody harmonization. Probabilistic models are predominant in melody harmonization tasks, most of which only treat melody notes as independent observations and do not take note of substructures in the melodic sequence. To fill this gap, we add substructure discovery as a crucial step in automatic chord generation. The proposed method consists of a structured representation module that generates hierarchical structures for the symbolic melodies, a policy module that learns to break a melody into segments (whose boundaries concur with chord changes) and phrases (the subunits in segments) and a harmonization module that generates chord sequences for each segment. We formulate the structure discovery process as a sequential decision problem with a policy gradient RL method selecting the boundary of each segment or phrase to obtain an optimized structure. We conduct experiments on our preprocessed HookTheory Lead Sheet Dataset, which has 17,979 melody/chord pairs. The results demonstrate that our proposed method can learn task-specific representations and, thus, yield competitive results compared with state-of-the-art baselines.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献