MAN-EDoS: A Multihead Attention Network for the Detection of Economic Denial of Sustainability Attacks

Author:

Ta Vinh Quoc,Park Minho

Abstract

Cloud computing is one of the most modernized technology for the modern world. Along with the developments in the cloud infrastructure comes the risk of attacks that exploit the cloud services to exhaust the usage-based resources. A new type of general denial attack, called “economic denial of sustainability” (EDoS), exploits the pay-per-use service to scale-up resource usage normally and gradually over time, finally bankrupting a service provider. The stealthiness of EDoS has made it challenging to detect by most traditional mechanisms for the detection of denial-of-service attacks. Although some recent research has shown that multivariate time recurrent models, such as recurrent neural networks (RNN) and long short-term memory (LSTM), are effective for EDoS detection, they have some limitations, such as a long processing time and information loss. Therefore, an efficient EDoS detection scheme is proposed, which utilizes an attention technique. The proposed attention technique mimics cognitive attention, which enhances the critical features of the input data and fades out the rest. This reduces the feature selection processing time by calculating the query, key and value scores for the network packets. During the EDoS attack, the values of network features change over time. The proposed scheme inspects the changes of the attention scores between packets and between features, which can help the classification modules distinguish the attack flows from network flows. On another hand, our proposal scheme speeds up the processing time for the detection system in the cloud. This advantage benefits the detection process, but the risk of the EDoS is serious as long as the detection time is delayed. Comprehensive experiments showed that the proposed scheme can enhance the detection accuracy by 98%, and the computational speed is 60% faster compared to previous techniques on the available datasets, such as KDD, CICIDS, and a dataset that emerged from the testbed. Our proposed work is not only beneficial to the detection system in cloud computing, but can also be enlarged to be better with higher quality of training and technologies.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3