Improvement of 5G Transportation Services with SDN-Based Security Solutions and beyond 5G

Author:

Algarni AbdullahORCID,Thayananthan VijeyORCID

Abstract

The transportation industries forecast that by 2050 more than 50% of vehicles on the road will be autonomous vehicles, and automotive services will dynamically support all vehicles. All of them will be serviced using the latest technology, which includes the Software Defined Network (SDN) and available new generations (5G+ or 6G) at the time. Although many transportation services and rapid facilities are achievable dynamically, transportation services with automation and intelligent actions are still not mature because the legacy of transport services cannot be corporate with the 5G+. These expected problems can be improved through the following possible and manageable approaches: flexible framework of 5G automotive services from the legacy systems, designing energy-efficient and intelligent infrastructures with SDN, and managing security solutions that evolve with the emerging technology. An efficient model (flexible framework) is proposed to secure smart transportation services with a secure and intelligent connected system and security solutions based on the 5G concept. Although 5G is considered in this framework, the method and steps of design and solution phases will be adaptable to the 5G+ framework. Furthermore, the basic properties of SDN allowed us to design a novel approach for measuring data traffic related to transport services and transport management, such as the priority of the transportation services. With the emergence of 5G+ capabilities, transportation services expect more challenges through future user requirements, including dynamic security solutions, minimum latency, maximum energy efficiency (EE), etc. Future automotive services depend on many sensors and their messages received through secure communication systems with 5G+ capabilities. As a result, this theoretical model will prove that 5G capabilities provide security facilities, better latency, and EE within the transportation system. Moreover, this model can be extendable to improve the 5G+ transportation services.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3