Assembly of a Coreset of Earth Observation Images on a Small Quantum Computer

Author:

Otgonbaatar SoronzonboldORCID,Datcu Mihai

Abstract

Satellite instruments monitor the Earth’s surface day and night, and, as a result, the size of Earth observation (EO) data is dramatically increasing. Machine Learning (ML) techniques are employed routinely to analyze and process these big EO data, and one well-known ML technique is a Support Vector Machine (SVM). An SVM poses a quadratic programming problem, and quantum computers including quantum annealers (QA) as well as gate-based quantum computers promise to solve an SVM more efficiently than a conventional computer; training the SVM by employing a quantum computer/conventional computer represents a quantum SVM (qSVM)/classical SVM (cSVM) application. However, quantum computers cannot tackle many practical EO problems by using a qSVM due to their very low number of input qubits. Hence, we assembled a coreset (“core of a dataset”) of given EO data for training a weighted SVM on a small quantum computer, a D-Wave quantum annealer with around 5000 input quantum bits. The coreset is a small, representative weighted subset of an original dataset, and its performance can be analyzed by using the proposed weighted SVM on a small quantum computer in contrast to the original dataset. As practical data, we use synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and a Polarimetric Synthetic Aperture Radar (PolSAR) image of San Francisco. We measured the closeness between an original dataset and its coreset by employing a Kullback–Leibler (KL) divergence test, and, in addition, we trained a weighted SVM on our coreset data by using both a D-Wave quantum annealer (D-Wave QA) and a conventional computer. Our findings show that the coreset approximates the original dataset with very small KL divergence (smaller is better), and the weighted qSVM even outperforms the weighted cSVM on the coresets for a few instances of our experiments. As a side result (or a by-product result), we also present our KL divergence findings for demonstrating the closeness between our original data (i.e., our synthetic data, Iris data, hyperspectral image, and PolSAR image) and the assembled coreset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coreset selection can accelerate quantum machine learning models with provable generalization;Physical Review Applied;2024-07-29

2. Binary Classification of Remotely Sensed Images Using SVD Based GLCM Features in Quantum Framework;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Harnessing quantum computing for smart agriculture: Empowering sustainable crop management and yield optimization;Computers and Electronics in Agriculture;2024-03

4. Texture Based LULC Classification of Images Using QSVM;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. Optimizing Kernel-Target Alignment for Cloud Detection in Multispectral Satellite Images;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3