Abstract
Satellite instruments monitor the Earth’s surface day and night, and, as a result, the size of Earth observation (EO) data is dramatically increasing. Machine Learning (ML) techniques are employed routinely to analyze and process these big EO data, and one well-known ML technique is a Support Vector Machine (SVM). An SVM poses a quadratic programming problem, and quantum computers including quantum annealers (QA) as well as gate-based quantum computers promise to solve an SVM more efficiently than a conventional computer; training the SVM by employing a quantum computer/conventional computer represents a quantum SVM (qSVM)/classical SVM (cSVM) application. However, quantum computers cannot tackle many practical EO problems by using a qSVM due to their very low number of input qubits. Hence, we assembled a coreset (“core of a dataset”) of given EO data for training a weighted SVM on a small quantum computer, a D-Wave quantum annealer with around 5000 input quantum bits. The coreset is a small, representative weighted subset of an original dataset, and its performance can be analyzed by using the proposed weighted SVM on a small quantum computer in contrast to the original dataset. As practical data, we use synthetic data, Iris data, a Hyperspectral Image (HSI) of Indian Pine, and a Polarimetric Synthetic Aperture Radar (PolSAR) image of San Francisco. We measured the closeness between an original dataset and its coreset by employing a Kullback–Leibler (KL) divergence test, and, in addition, we trained a weighted SVM on our coreset data by using both a D-Wave quantum annealer (D-Wave QA) and a conventional computer. Our findings show that the coreset approximates the original dataset with very small KL divergence (smaller is better), and the weighted qSVM even outperforms the weighted cSVM on the coresets for a few instances of our experiments. As a side result (or a by-product result), we also present our KL divergence findings for demonstrating the closeness between our original data (i.e., our synthetic data, Iris data, hyperspectral image, and PolSAR image) and the assembled coreset.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献