Runtime Analysis of Area-Efficient Uniform RO-PUF for Uniqueness and Reliability Balancing

Author:

Zulfikar ZulfikarORCID,Soin Norhayati,Wan Muhamad Hatta Sharifah FatmadianaORCID,Abu Talip Mohamad Sofian

Abstract

The main issue of ring oscillator physical unclonable functions (RO-PUF) is the existence of unstable ROs in response to environmental variations. The RO pairs with close frequency differences tend to contribute bit flips, reducing the reliability. Research on improving reliability has been carried out over the years. However, it has led to other issues, such as decreasing the uniqueness and increasing the area utilized. Therefore, this paper proposes a uniform RO-PUF, requiring a smaller area than a conventional design, aiming to balance reliability and uniqueness. We analyzed RO runtimes to increase reliability. In general, our method (uniqueness = 47.48%, reliability = 99.16%) performs better than previously proposed methods for a similar platform (Altera), and the reliability is as good as the latest methods using the same IC technology (28 nm). Moreover, the reliability is higher than that of RO-PUF with challenge and response pair (CRP) enhancements. The evaluation was performed in longer runtimes, where the pulses produced by ROs exceeded the counter capacity. This work recommends choosing ranges of the runtime of RO for better performance. For the 11-stage ROs, the range should be 1.598–4.30 ms, or 6.12–8.61 ms, or 12.24–12.91 ms. Meanwhile, for the 20-stage, the range should be 2.717–8.37 ms, or 10.97–16.74 ms, or 21.93–25.10 ms.

Funder

University of Malaya

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. Physical Random Functions;Gassend,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3