Abstract
In view of the practical application requirements for the rapid expansion of electric taxis (ETs) and the reasonable planning of charging stations, this paper presents a method for mining latent semantic correlation of large data by the trajectory of ETs and the planning of charging stations with optimal cost. Firstly, the vector space modeling method of ET trajectory data is studied, and the semantic similarity of the trajectory data matrix is evaluated. Secondly, the hidden characteristics of the mass trajectory data are extracted by matrix decomposition. Then, the latent semantic correlation characteristics of trajectory data are mined. Finally, the fast clustering of ETs is realized by the spectral clustering method. On this basis, with the objective of minimizing the annual construction and maintenance costs of charging stations, the optimal planning scheme of charging stations for ETs is given. In this paper, the spectrum clustering processing method of the potential semantic correlation of the big data of the driving track of ETs can be combined with the operation and maintenance costs of the charging station, and the convenience of charging for ET users is also considered. This provides decision support information for the reasonable planning of charging stations.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献