Design Improvements on Fast, High-Order, Incremental Sigma-Delta ADCs for Low-Noise Stacked CMOS Image Sensors

Author:

Freitas Luis Miguel CarvalhoORCID,Morgado-Dias FernandoORCID

Abstract

Modern CMOS imaging devices are present everywhere, in the form of line, area and depth scanners. These image devices can be used in the automotive field, in industrial applications, in the consumer’s market, and in various medical and scientific areas. Particularly in industrial and scientific applications, the low-light noise performance or the high dynamic-range features are often the cases of interest, combined with low power dissipation and high frame rates. In this sense, the noise floor performance and the power consumption are the focus of this work, given that both are interlinked and play a direct role in the remaining sensor features. It is known that thermal and flicker noise sources are the main contributors to the degradation of the sensor performance, concerning the sensor output image noise. This paper presents an indirect way to reduce both the thermal and the flicker noise contributions by using thin-oxide low voltage supply column readout circuits and fast 3rd order incremental sigma-delta converters with noise shaping capabilities (to provide low noise output digital samples—74 μVrms; 0.7 e−rms; at 105 μV/e−), and thus performing correlated double sampling in a short time (19 μs), while dissipating significant low power (346 μW). Throughout the extensive parametric transistor-level simulations, the readout path produced 1.2% non-linearity, with a competitive saturation capacity (6.5 ke−) pixel. In addition, this paper addresses the readout parallelism as the main point of interest, decoupling resolution from the image noise and the frame rate, at virtually any array resolution. The design and simulations were performed with Virtuoso 6.17 tools (Cadence Design Systems, San Jose, CA, USA) using Spectre models from TS18IS Image Sensor 0.18 µm Process Development Kit (Tower Jazz Semiconductor, Migdal Haemek, Israel).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Optical Sensors in CMOS;Electronics;2024-02-08

2. 4T Complementary Metal Oxide Semiconductor Image Sensor Charge Transfer Efficiency Optimization;Journal of Nanoelectronics and Optoelectronics;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3