Abstract
The advantages offered by DC microgrids, such as elimination of skin effect losses, no requirement of frequency synchronization and high efficiency for power transmission are the major reasons that microgrids have attracted the attention of researchers in the last decade. Moreover, the DC friendly nature of renewable energy resources makes them a perfect choice for integration with DC microgrids, resulting in increased reliability and improved stability. However, in order to integrate renewable energy resources with the DC microgrids, challenges like equal load sharing and voltage regulation of the busbar under diverse varying load conditions are to be addressed. Conventionally, droop control with PI compensation is used to serve this purpose. However, this cascaded scheme results in poor regulation to large load variations and steady state errors. To address this issue, this paper presents a sliding mode control-based approach. Key features of SMC are its ease of implementation, robustness to load variations, and fast dynamic response. The system model is derived and simulated to analyze the stability and performance of the proposed controller. An experimental test bench is developed to demonstrate the effectiveness of SMC against modeled dynamics and is compared with the droop controller. The results show an improvement of 26% and 27.4% in the rise time and settling time, respectively. Robustness of the proposed scheme is also tested by switching it with a step load and an improvement of 40% has been observed.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献