Diagnosis of Alzheimer’s Disease Based on the Modified Tresnet

Author:

Xu Zelin,Deng Hongmin,Liu Jin,Yang Yang

Abstract

In the medical field, Alzheimer’s disease (AD), as a neurodegenerative brain disease which is very difficult to diagnose, can cause cognitive impairment and memory decline. Many existing works include a variety of clinical neurological and psychological examinations, especially computer-aided diagnosis (CAD) methods based on electroencephalographic (EEG) recording or MRI images by using machine learning (ML) combined with different preprocessing steps such as hippocampus shape analysis, fusion of embedded features, and so on, where EEG dataset used for AD diagnosis is usually is large and complex, requiring extraction of a series of features like entropy features, spectral feature, etc., and it has seldom been applied in the AD detection based on deep learning (DL), while MRI images were suitable for both ML and DL. In terms of the structural MRI brain images, few differences could be found in brain atrophy among the three situations: AD, mild cognitive impairment (MCI), and Normal Control (NC). On the other hand, DL methods have been used to diagnose AD incorporating MRI images in recent years, but there have not yet been many selective models with very deep layers. In this article, the Gray Matter (GM) Magnetic Resonance Imaging (MRI) is automatically extracted, which could better distinguish among the three types of situations like AD, MCI, and NC, compared with Cerebro Spinal Fluid (CSF) and White Matter (WM). Firstly, FMRIB Software Library (FSL) software is utilized for batch processing to remove the skull, cerebellum and register the heterogeneous images, and the SPM + cat12 tool kits in MATLAB is used to segment MRI images for obtaining the standard GM MRI images. Next, the GM MRI images are trained by some new neural networks. The characteristics of the training process are as follows: (1) The Tresnet, as the network that achieves the best classification effect among several new networks in the experiment, is selected as the basic network. (2) A multi-receptive-field mechanism is integrated into the network, which is inspired by neurons that can dynamically adjust the receptive fields according to different stimuli. (3) The whole network is realized by adding multiple channels to the convolutional layer, and the size of the convolution kernel of each channel can be dynamically adjusted. (4) Transfer learning method is used to train the model for speeding up the learning and optimizing the learning efficiency. Finally, we achieve the accuracies of 86.9% for AD vs. NC, 63.2% for AD vs. MCI vs. NC respectively, which outperform the previous approaches. The results demonstrate the effectiveness of our approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alzheimer’s disease diagnosis using deep learning techniques: datasets, challenges, research gaps and future directions;International Journal of System Assurance Engineering and Management;2024-07-30

2. Disease2Vec: Encoding Alzheimer’s progression via disease embedding tree;Pharmacological Research;2024-01

3. Enhancing Alzheimer's Disease Prediction with Bayesian Optimization and Ensemble Methods;Proceedings of the 5th International Conference on Information Management & Machine Intelligence;2023-11-23

4. LightMoDAD: A Lightweight Diagnosis Network for Alzheimer's Disease with Small-Scale Multi-Modal Data;2023 China Automation Congress (CAC);2023-11-17

5. Early Alzheimer’s disease diagnosis using an XG-Boost model applied to MRI images;Biomedical Research and Therapy;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3