Prediction of Long-Term Elbow Flexion Force Intervals Based on the Informer Model and Electromyography

Author:

Lu Wei,Gao Lifu,Li Zebin,Wang Daqing,Cao Huibin

Abstract

Accurate and long-term prediction of elbow flexion force can be used to recognize the intended movement and help wearable power-assisted robots to improve control performance. Our study aimed to find a proper relationship between electromyography and flexion force. However, the existing methods must incorporate biomechanical models to produce accurate and timely predictions of flexion force. Elbow flexion force is largely determined by the contractile properties of muscles, and the relationship between flexion force and the motor function of muscles has to be thoroughly analyzed. Therefore, based on the investigation on the contributions of different muscles to the flexion force, original electromyography signals were decomposed into non-linear and non-stationary parts. We selected the mean absolute value (MAV) of the non-linear part and the variance of the non-stationary part as inputs for an Informer prediction model that does not require detailed a priori knowledge of biomechanical models and is optimized for processing time sequences. Finally, a long-term flexion force probability interval is proposed. The proposed framework performs well in predicting long-term flexion force and outperforms other state-of-the-art models when compared to experimental results.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3