Abstract
Selecting a final machine learning (ML) model typically occurs after a process of hyperparameter optimization in which many candidate models with varying structural properties and algorithmic settings are evaluated and compared. Evaluating each candidate model commonly relies on k-fold cross validation, wherein the data are randomly subdivided into k folds, with each fold being iteratively used as a validation set for a model that has been trained using the remaining folds. While many research studies have sought to accelerate ML model selection by applying metaheuristic and other search methods to the hyperparameter space, no consideration has been given to the k-fold cross validation process itself as a means of rapidly identifying the best-performing model. The current study rectifies this oversight by introducing a greedy k-fold cross validation method and demonstrating that greedy k-fold cross validation can vastly reduce the average time required to identify the best-performing model when given a fixed computational budget and a set of candidate models. This improved search time is shown to hold across a variety of ML algorithms and real-world datasets. For scenarios without a computational budget, this paper also introduces an early stopping algorithm based on the greedy cross validation method. The greedy early stopping method is shown to outperform a competing, state-of-the-art early stopping method both in terms of search time and the quality of the ML models selected by the algorithm. Since hyperparameter optimization is among the most time-consuming, computationally intensive, and monetarily expensive tasks in the broader process of developing ML-based solutions, the ability to rapidly identify optimal machine learning models using greedy cross validation has obvious and substantial benefits to organizations and researchers alike.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference43 articles.
1. Gartner Says Global Artificial Intelligence Business Value to Reach $1.2 Trillion in 2018,2018
2. Worldwide Artificial Intelligence Spending Guide,2019
3. Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions
4. Hyperparameter Optimization;Feurer,2019
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献