Anomaly Detection of Operating Equipment in Livestock Farms Using Deep Learning Techniques

Author:

Park HyeonORCID,Park DaeheonORCID,Kim SehanORCID

Abstract

In order to establish a smart farm, many kinds of equipment are built and operated inside and outside of a pig house. Thus, the environment for livestock (limited to pigs in this paper) in the barn is properly maintained for its growth conditions. However, due to poor environments such as closed pig houses, lack of stable power supply, inexperienced livestock management, and power outages, the failure of these environment equipment is high. Thus, there are difficulties in detecting its malfunctions during equipment operation. In this paper, based on deep learning, we provide a mechanism to quickly detect anomalies of multiple equipment (environmental sensors and controllers, etc.) in each pig house at the same time. In particular, environmental factors (temperature, humidity, CO2, ventilation, radiator temperature, external temperature, etc.) to be used for learning were extracted through the analysis of data accumulated for the generation of predictive models of each equipment. In addition, the optimal recurrent neural network (RNN) environment was derived by analyzing the characteristics of the learning RNN. In this way, the accuracy of the prediction model can be improved. In this paper, the real-time input data (only in the case of temperature) was intentionally induced above the threshold, and 93% of the abnormalities were detected to determine whether the equipment was abnormal.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. A blueprint for developing and applying precision livestock farming tools: A key output of the EU-PLF project;Marcella;Anim. Front.,2017

2. Precision livestock farming for pigs;Erik;Anim. Front.,2017

3. Edge Computing for Data Anomaly Detection of Multi-Sensors in Underground Mining;Chunde;Electronics,2021

4. Total Automation Systems for Pigshttps://www.fancom.com/pigs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3