An Improved Meteor Echo Recognition Algorithm for SuperDARN HF Radar

Author:

Li Guangming,Yan Jingye,Lan Ailan

Abstract

The SuperDARN HF radars can be used for meteor observation and inversion of mid-upper atmosphere neutral wind using observed meteor echo Doppler velocities. Aiming at the problem that the extraction of meteor echo based on echo power, Doppler velocity and spectral width is rough and contains ionospheric echo, this paper optimizes the extraction algorithm of meteor echo. Based on the AgileDARN HF radar’s digital characteristics, the observation method of meteor echo was improved, and we designed a meteor observation mode without changing the hardware system: using a meteor observation with a 7.5 km range resolution and a 2 s integration time, we extracted the Doppler characteristics of different echo types at meteor echo ranges; according to these features, the extraction algorithm of meteor echo was optimized. By analyzing the measured data, the characteristics of diurnal variation, power distribution, Doppler velocity distribution and spectral width distribution of meteor echo extracted by the optimization algorithm were obtained. The meteor echo characteristics obtained by the improved algorithm are more consistent with the theoretical analysis; thus, the improved algorithm is better than the SuperDARN high frequency radar meteor echo extraction algorithm and has good performance. The meteor echo extraction algorithm presented in this paper can extract the meteor echo more accurately, so that the atmospheric neutral wind can be retrieved more accurately. At the same time, the proposed algorithm is not only applicable to AgileDARN HF radar meteor observation mode data, but also to AgileDARN and SuperDARN normal mode data, which is beneficial to expand the data application of SuperDARN radars.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3