Thermal Defect Detection for Substation Equipment Based on Infrared Image Using Convolutional Neural Network

Author:

Wang Kaixuan,Zhang Jiaqiao,Ni Hongjun,Ren FujiORCID

Abstract

Thermal defects of substation equipment have a great impact on the stability of power systems. Temperature is crucial for thermal defect detection in infrared images. The traditional detection methods, which have low efficiency and poor accuracy, record the temperature of infrared images manually. In this study, a thermal defect detection method based on infrared images using a convolutional neural network (CNN) is proposed. Firstly, the improved pre-processing method is applied to reduce background information, and the region of interest is located according to the contour and position information, hence improving the quality of images. Then, the temperature values are segmented to establish the dataset (T-IR11), which contains 11 labels. Finally, the CNN model is constructed to extract features, and the support vector machine is trained for classification. To verify the effectiveness of the proposed method, precision, recall, and F1 score are adopted and 10-fold cross-validation is employed on the T-IR11 dataset. The results demonstrate that the accuracy of the proposed method is 99.50%, and the performance is superior to that of previous methods in terms of infrared images. The proposed method can realize automatic temperature recognition and equipment with thermal defects can be recorded systematically, which has significant practical value for defect detection in substation equipment.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on strip surface defect detection based on improved YOLOv5 algorithm;Ironmaking & Steelmaking: Processes, Products and Applications;2024-07-23

2. Automatic Defect Classification for Infrared Thermography in CFRP based on Deep Learning Dense Convolutional Neural Network;Journal of Nondestructive Evaluation;2024-06-07

3. Fault detection method for substation in smart power grid: a random forest approach;Fourth International Conference on Machine Learning and Computer Application (ICMLCA 2023);2024-05-22

4. Real-time performance evaluation and optimization of electrical substation equipment inspection algorithm based on distributed computing;International Journal of Low-Carbon Technologies;2024

5. Schematic Edge Detection of Power Distribution Networks Using the Canny, Sobel, Robert, and Prewitt Algorithms;2023 IEEE International Conference on Computing (ICOCO);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3