Network-Oriented Real-Time Embedded System Considering Synchronous Joint Space Motion for an Omnidirectional Mobile Robot

Author:

Delgado Raimarius,Choi Byoung

Abstract

This paper proposes a real-time embedded system for joint space control of omnidirectional mobile robots. Actuators driving an omnidirectional mobile robot are connected in a line topology which requires synchronization to move simultaneously in translation and rotation. We employ EtherCAT, a real-time Ethernet network, to control servo controllers for the mobile robot. The first part of this study focuses on the design of a low-cost embedded system utilizing an open-source EtherCAT master. Although satisfying real-time constraints is critical, a desired trajectory on the center of the mobile robot should be decomposed into the joint space to drive the servo controllers. For the center of the robot, a convolution-based path planner and a corresponding joint space control algorithm are presented considering its physical limits. To avoid obstacles that introduce geometric constraints on the curved path, a trajectory generation algorithm considering high curvature turning points is adapted for an omnidirectional mobile robot. Tracking a high curvature path increases mathematical complexity, which requires precise synchronization between the actuators of the mobile robot. An improvement of the distributed clock—the synchronization mechanism of EtherCAT for slaves—is presented and applied to the joint controllers of the mobile robot. The local time of the EtherCAT master is dynamically adjusted according to the drift of the reference slave, which minimizes the synchronization error between each joint. Experiments are conducted on our own developed four-wheeled omnidirectional mobile robot. The experiment results confirm that the proposed system is very effective in real-time control applications for precise motion control of the robot even for tracking high curvature paths.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3