High Resolution Imaging from Azimuth Missing SAR Raw Data via Segmented Recovery

Author:

Qian YuleiORCID,Zhu Daiyin

Abstract

Synthetic Aperture Radar (SAR) raw data missing occurs when radar is interrupted by various influences. In order to cope with this problem, a new method is proposed to focus the azimuth missing SAR raw data via segmented recovery in this paper. A reference function in time domain is designed to make the missing raw data sparser in two dimensional frequency domain. Afterwards, greedy algorithms are available to recover the missing data in two dimensional frequency domain. In addition, in order to avoid range frequency aliasing problem caused by reference function multiplication in time domain, the missing raw data is split into several parts in range direction and is recovered with a segmented recovery strategy. Then, the recovered raw data is available to be focused with traditional SAR imaging algorithms. The range migration algorithm is chosen to deal with the recovered raw data in this paper. Point target and area target simulations are carried out to validate the effectiveness of the proposed method on azimuth missing SAR raw data. Moreover, the proposed method is implemented on real SAR data in order to further provide convincing demonstration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for Estimating SAR Ground-Moving Target Parameters With Azimuth Missing Data Based on Contrast Maximization;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Focusing Azimuth Periodically Interrupted SAR Echo with Deconvolution by Complex FISTA;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

3. SAR Imaging From Azimuth Missing Raw Data via Sparsity Adaptive StOMP;IEEE Geoscience and Remote Sensing Letters;2022

4. Azimuth Interrupted FMCW SAR for High-Resolution Imaging;IEEE Geoscience and Remote Sensing Letters;2022

5. Parameter Design and Imaging Method of Spaceborne Azimuth Interrupted FMCW SAR;IEEE Geoscience and Remote Sensing Letters;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3