An Improved Safety Belt Detection Algorithm for High-Altitude Work Based on YOLOv8

Author:

Jiang Tingyao1,Li Zhao1ORCID,Zhao Jian1,An Chaoguang1,Tan Hao1,Wang Chunliang1

Affiliation:

1. College of Computer and Information, China Three Gorges University, Yichang 443002, China

Abstract

High-altitude work poses significant safety risks, and wearing safety belts is crucial to prevent falls and ensure worker safety. However, manual monitoring of safety belt usage is time consuming and prone to errors. In this paper, we propose an improved high-altitude safety belt detection algorithm based on the YOLOv8 model to address these challenges. Our paper introduces several improvements to enhance its performance in detecting safety belts. First, to enhance the feature extraction capability, we introduce a BiFormer attention mechanism. Moreover, we used a lightweight upsampling operator instead of the original upsampling layer to better preserve and recover detailed information without adding an excessive computational burden. Meanwhile, Slim-neck was introduced into the neck layer. Additionally, extra auxiliary training heads were incorporated into the head layer to enhance the detection capability. Lastly, to optimize the prediction of bounding box position and size, we replaced the original loss function with MPDIOU. We evaluated our algorithm using a dataset collected from high-altitude work scenarios and demonstrated its effectiveness in detecting safety belts with high accuracy. Compared to the original YOLOv8 model, the improved model achieves P (precision), R (recall), and mAP (mean average precision) values of 98%, 91.4%, and 97.3%, respectively. These values represent an improvement of 5.1%, 0.5%, and 1.2%, respectively, compared to the original model. The proposed algorithm has the potential to improve workplace safety and reduce the risk of accidents in high-altitude work environments.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3