Toward Greener Smart Cities: A Critical Review of Classic and Machine-Learning-Based Algorithms for Smart Bin Collection

Author:

Gatti Alice1ORCID,Barbierato Enrico1ORCID,Pozzi Andrea1ORCID

Affiliation:

1. Department of Mathematics and Physics, Catholic University of the Sacred Heart, via Garzetta 48, 25133 Brescia, Italy

Abstract

This study critically reviews the scientific literature regarding machine-learning approaches for optimizing smart bin collection in urban environments. Usually, the problem is modeled within a dynamic graph framework, where each smart bin’s changing waste level is represented as a node. Algorithms incorporating Reinforcement Learning (RL), time-series forecasting, and Genetic Algorithms (GA) alongside Graph Neural Networks (GNNs) are analyzed to enhance collection efficiency. While individual methodologies present limitations in computational demand and adaptability, their synergistic application offers a holistic solution. From a theoretical point of view, we expect that the GNN-RL model dynamically adapts to real-time data, the GNN-time series predicts future bin statuses, and the GNN-GA hybrid optimizes network configurations for accurate predictions, collectively enhancing waste management efficiency in smart cities.

Publisher

MDPI AG

Reference62 articles.

1. França, R.P., Monteiro, A.C.B., Arthur, R., and Iano, Y. (2021). Smart Cities: A Data Analytics Perspective, Springer.

2. Mahamuni, C.V., Sayyed, Z., and Mishra, A. (2022, January 16–18). Machine Learning for Smart Cities: A Survey. Proceedings of the 2022 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India.

3. Gupta, A., Gupta, S., Memoria, M., Kumar, R., Kumar, S., Singh, D., Tyagi, S., and Ansari, N. (2022, January 26–27). Artificial Intelligence And Smart Cities: A Bibliometric Analysis. Proceedings of the 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), Faridabad, India.

4. The Dual Role of Artificial Intelligence in Developing Smart Cities;Zamponi;Smart Cities,2022

5. Soh, Z.H.C., Al-Hami Husa, M.A., Abdullah, S.A.C., and Shafie, M.A. (2019, January 27–28). Smart Waste Collection Monitoring and Alert System via IoT. Proceedings of the 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Kota Kinabalu, Malaysia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3