Urban Rail System Modeling and Simulation Based on Dynamic Train Density

Author:

Yu Xinyang1,Wang Xin1ORCID,Qin Yuxin2

Affiliation:

1. School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China

2. School of Computer Science, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

To further improve the simulation calculation ability of urban rail traction systems during the peak operation period and provide an accurate and reliable simulation tool for the subsequent train schedule and energy storage system design, a multi-train circuit model with a bilateral power supply was established in this paper, and a power calculation algorithm based on dynamic train density was designed. The circuit topology in the model can be dynamically adjusted according to the number of trains to improve the operation rate. Based on the spatial and electrical data of a real section of the subway, the urban rail circuit model was built on the MATLAB platform, and the actual operation data of the subway was imported for verification. The experimental results show that the multi-train model can accurately reflect the influence of voltage fluctuations on the traction system under different train running conditions, and the results fit the actual operation conditions. By comparing the influence of different train intervals on the RBE (regenerative braking energy) utilization, the results show that the optimal RBE utilization rate can be achieved by adjusting the train interval in the peak period.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Engineering Research Center of Electric Drive and Regenerative Energy Storage and Utilization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3