A Robust CNN for Malware Classification against Executable Adversarial Attack

Author:

Zhang Yunchun1ORCID,Jiang Jiaqi1,Yi Chao1,Li Hai1,Min Shaohui1,Zuo Ruifeng1,An Zhenzhou2,Yu Yongtao2

Affiliation:

1. School of Software, Yunnan University, Kunming 650095, China

2. Yunnan Key Laboratory of Smart City in Cyberspace Security, Yuxi Normal University, Yuxi 653100, China

Abstract

Deep-learning-based malware-detection models are threatened by adversarial attacks. This paper designs a robust and secure convolutional neural network (CNN) for malware classification. First, three CNNs with different pooling layers, including global average pooling (GAP), global max pooling (GMP), and spatial pyramid pooling (SPP), are proposed. Second, we designed an executable adversarial attack to construct adversarial malware by changing the meaningless and unimportant segments within the Portable Executable (PE) header file. Finally, to consolidate the GMP-based CNN, a header-aware loss algorithm based on the attention mechanism is proposed to defend the executive adversarial attack. The experiments showed that the GMP-based CNN achieved better performance in malware detection than other CNNs with around 98.61% accuracy. However, all CNNs were vulnerable to the executable adversarial attack and a fast gradient-based attack with a 46.34% and 34.65% accuracy decline on average, respectively. Meanwhile, the improved header-aware CNN achieved the best performance with an evasion ratio of less than 5.0%.

Funder

Opening Foundation of Yunnan Key Laboratory of Smart City in Cyberspace Security

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3